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Étale Cohomology is a cohomology theory for schemes which plays an im-
portant role in algebraic geometry and number theory. In this seminar, we
will explore some concrete and useful computations of étale cohomology,
highlighting its intersection with other cohomology theories.

1 Introduction

Let X be a scheme, we define the small site of X, denoted Xét as follows: Recall that
a map is said to be étale if it is flat and unramified at each point of X. We define the
category Xét by:

– Objects of Xét are étale X-schemes (schemes U such that ϕU : U → X is étale)

– Morphisms in Xét are étale morhisms of X-schemes φ : U → V such that the
following commutes:

U V

X

φ

A presheaf (resp. a sheaf) on Xét will be called an étale presheaf (resp. étale sheaf).
Etale presheaves (resp. étale sheaf) on the small site of X form the category PShét(X)
(resp. Shét(X))
Now for all U ∈ Xét, f : X → Y a morphism of schemes, the functors

Γ(U, ·) : Shét(X)→ Ab (1)

Γ(U, f∗(·)) : Shét(X)→ Ab (2)

are left exact. Since Shét(X) is abelian and has enough injectives, one defines for q ≥ 0
their right derived functors

F 7→ RqΓ(U,F) =: Hq
ét(U,F)

F 7→ RqΓ(U, f∗F) = Hq
ét(U ×

X
Y,F)
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Definition 1.1. Let q ≥ 0. We define the q-th étale cohomology group of an étale
sheaf F to be the q-th derived functor

F 7→ Hq
ét(X,F)

Similarly, we define the q-th higher direct image of an étale sheaf G to be q-the derived
functor

G 7→ Rqf∗G

associated to the presheaf
F 7→ Hq

ét(U ×
X
Y,G)

Let X be a scheme and U : {ui → U} be an étale covering in Xét. For any sheaf
F ∈ Shét(X), one has the following biregular spectral sequences

Leray : Ep,q2 = Hp
ét(Y,R

qf∗F) =⇒ Hp+q
ét (X,F) (3)

Čech-to-derived functor : Ep,q2 = Ȟp(Y,Hq(G)) =⇒ Hp+q
ét (X,G) (4)

Where Hq(G) : U 7→ Hq(U,G).

Definition 1.2. Let X be a scheme. A sheaf F ∈ Shét(X) is said to be flasque if for
all étale covering U : {ui → U} in Xét, one has

Ȟ1(U ,F) = 0

2 Properties of étale cohomology

Let X be a scheme, in this section we will prove some basic properties of étale coho-
mology, in particular, we will prove that for a finite morphism of schemes, the higher
direct images vanish.

Proposition 2.1. Let f : X → Y be a finite, radicial and surjective morphism of
schemes. Then one has

∀G ∈ Shét(Y ) Hq
ét(Y,G) ∼= Hq

ét(X, f
∗G)

Proof. we know that, since f is finite, one has for each y ∈ Y

(f∗F)y ∼=
⊕

x∈X ⊗
OY

k(y)

Fx

Since f is radicial, X ⊗
OY

k(y) consist only of one point. Let F ∈ Shét(X), then one has

f∗(f∗F)y ∼= f∗Fx = Ff(x)

⇒ f∗f∗F ∼= F
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Moreover, one gets even an equivalence of categories between Shét(X) and Shét(Y )
(see [Fu11][5.3.10]). In particular, since f∗ is exact:

E2
pq = Hp+q

ét (Y,Rqf∗F) = 0 ∀q ≥ 1

Hence,
Hp
ét(Y, f∗G) ∼= Hp

ét(X,G) ∀G ∈ Shét(X)

In particular, for G = f∗F

Hq
ét(Y,F) ∼= Hq

ét(Y, f∗(f
∗F)) ∼= Hq

ét(X, f
∗F)

As a first consequence of this result, we can examine some useful restrictions while
computing the cohomology:

Corollary 2.2. (i) Let X be a scheme, then for any sheaf F ∈ Shét(X)

Hq
ét(X,F) ∼= Hq

ét(Xred,F|Xred
)

(ii) Let X be a scheme over a field K, and let L be a purely inseparable extension of
K. Then for any sheaf F ∈ Shét(X)

Hq
ét(X,F) ∼= Hq

ét(X ⊗K L,F|X⊗KL)

Proof. (i) consider the map f : Xred → X, for simplicity, we restrict to the affine
case, then we globalize it to the general one. Suppose X is affine, and consider
the following commutative diagram for any open affine U = Spec(A)

Xred X

f−1(U) = Spec
(
A/

Nil(A)

)
U = Spec(A)

Clearly, as f is a closed immersion, it is finite and surjective, in order to show
that it is radicial, consider the following diagram, where K is an algebraically
closed field:

Xred(K) X(K)

Hom(Spec(K), Xred) Hom(Spec(K), X)∼

This comes form the universal property of reduction: In the affine case always,
for X = Spec(A); a map α ∈ Hom(A,K) factors uniquely into

A −→ Ared = A/
Nil(A)

∃!−−→ K

As Nil(A) ⊆ ker(α)
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(ii) Consider the commutative diagram

X ⊗K L X

Spec(L) Spec(K)

f

p

Clearly, f is surjective, and finite since L/K is finite. The fact that it is radicial
is a direct consequence of the following characterization: a morphf is radicial if
and only if it is injective, and for any x ∈ X, the residue field k(x) of X at x is a
purely inseparable algebraic extension of the residue field k(f(x)) of Y at f(x).
(See [Fu11][1.7.1]).

Proposition 2.3. Let A be a strict Henselian local ring, X = Spec(A). Then for any
sheaf F ∈ Shét(X)

Hq
ét(X,F) ∼= 0 ∀q ≥ 0

Proof. This is due to the fact that Γ(X, ·) is exact. Indeed, Γ(Spec(A),F) ∼= Fs where
s is the closed point of X, and the stalk functor is exact.

As a final result, we show the vanishing of the higher direct images of étale sheaves,
under a finite morphism.

Proposition 2.4. Let f : X → Y be a finite morphism of schemes, and F an étale
sheaf over X. Then one has

• Rqf∗F = 0 ∀q ≥ 1

• Hq
ét(Y, f∗F) ∼= Hq

ét(X,F) ∀q ≥ 0

Proof. Since f∗ is exact, Rqf∗F = 0 and by the Leray spectral sequence (3)

Epq2 = Hq
ét(Y, f∗F) ∼= Hq

ét(X,F)
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3 The Étale-Zariski cohomologies

Figure 1: A Zariski-étale meme
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Let X be a scheme, and XZar the site induced by the Zariski topology. In this
section we want to compare the cohomology on the étale and Zarisky sites, and by
’comparing’ we concretely want to define pullback and pushforward functors between
the categories Xét and XZar. We start from the continuous map of Grothendieck
topologies

i : Xét −→ XZar

i−1(U
étale−−−→ X) 7−→ U Open

As a first intuition, we define pushforwards as simply ’the restriction’ from the étale
to the Zariski topology, i.e

i∗F : U 7→ F(U)

where U is a Zariski open and F an étale sheaf on X. This defines a ‘Zariski’ sheaf
i∗F . For the opposite direction, one might suspect that (étale) sheafification will be
needed. Indeed, we define pullbacks as the étale sheaf associated to the presheaf

iPG : (U
f−→́
et

X) 7−→ lim
−→

f(U)⊆V

G(V ) =
↑

(Since étale maps are also open)

G(f(V ))

where V is an open and G a sheaf on X. This defines an étale sheaf i∗G and one gets
a bijection

Hom(G, i∗F) ∼= Hom(i∗G,F)

so i∗ is right adjoint to i∗. Moreover, i∗ is exact as it commutes with finite limits and
finite fibre products. Sheafification yields a natural map on global sections F(X) →
i∗F(X), and by exactness of i∗, one obtains a (δ-functorial) map between cohomologies

H•Zar(X,F)→ H•ét(X, i
∗F) (5)

Intuitively, as the étale topology is finer than the Zariski one, one does not expect
the map in (5) to be an isomorphism. However, we will see that in some particular
conditions, one can make this happen.

3.1 Cohomology of étale sheaves associated to quasi-coherent modules

Let F be a Zariski sheaf, that is a quasi coherent OX -module. We define Fét to be
the étale sheaf

(U
π−→́
et

X) 7→ Γ(U, π∗F)

Theorem 3.1. Let X be a scheme, M a quasi coherent OX-module. Then one has

Hq
Zar(X,M ) ∼= Hq

ét(X,Mét)
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Remark 3.2. Before proving this result, we need to make few things clear. What we
implicitly do is that we use a sightly different version of i∗F , which is an OX-module
version of the morphism in (5). Explicitly, for the OX-module F , the structure sheaf
on the étale site OXét

(U) := OU (U) yields a map of rings OX −→ i∗OXét
on the site

XZar. By adjunction, i∗OXét
−→ OX yields a flat map on stalks

OX,x −→ ÕX,x ∼= OXét,x

where ÕXét,s is the strict Henselisation of the local ring OX,x at a geometric point x
(For more details, see [Fu11][5.3]). We thus obtain that

Fét ∼= OXét
i∗OX
⊗

i∗F

and thus, the morphism in (5) becomes

H•Zar(X,F)→ H•ét(X, i
∗F)→ H•ét(X,Fét)

Proof of Theorem 3.1. Let i : Xét → XZar, and consider the biregular spectral se-
quence

Ep,q2 = Hp
Zar(X,R

qi∗Mét) =⇒ Hp+q
ét (X,Mét)

To show that the edge map

Hq
Zar(X,M ) ∼= Hq

ét(X,Mét) (6)

is an isomorphism, it suffices to show that Rqi∗(Mét) = 0 for all q ≥ 1. As Rqi∗(Mét) is
the sheaf associated to the presheaf U 7−→ Hq

ét(U,Mét) for U ⊆ X open, it is sufficient
to show that Hq

ét(U,Mét) = 0 for all q ≥ 1, affine scheme U and quasi-coherent
OU -module M . We proceed by induction on q.

– For q = 1: Mét is flasque over Xaff
ét .

It suffices to check flasquness on finite covers. Let U := {Ui → U}i∈I be
an étale covering. Checking flasqueness on U is equivalent to checking it on
{
∐
Ui → U}i∈I , which is again equivalent to checking it on {V → U} where

V → U is affine, faithfully flat. We make use of the following lemma:

Lemma 3.3 ([Fu11] Lemma (5.7.6)). Let A → B be a faithfully flat ring ho-
momorphism, M be an A-module. Then the sequence

0→M
d−1−−→M ⊗A B

d0−→M ⊗A B ⊗A B
d1−→M ⊗A B ⊗A B ⊗A B

d2−→ ... (7)

is exact, where

dn : x⊗ b0 ⊗ ...⊗ bn 7−→
n+1∑
i=1

(−1)ix⊗ b0 ⊗ ...⊗ bi−1 ⊗ 1⊗ ...⊗ bn.
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Now, note that

Ȟq(U,Mét) ∼= lim
−→
U

Ȟq(U ,Mét) = 0 ∀q ≥ 1 (8)

as the Čech complexe here is nothing but (7). Thus, by the Čech-to-derived
functor spectral sequence (4), one has a canonical isomorphism

H1
ét(U,Mét) ∼= Ȟ1(U,Mét) = 0

– For q ≥ 1: Suppose Hn
ét(U,Mét) for all 1 ≤ n ≤ q.

Consider once again, the biregular spectral sequence (4)

Ep,q2 = Ȟp(U,Hq(Mét)) =⇒ Hp+q
ét (U,Mét))

One has
Ȟp(U,Hq(Mét)) = lim

−→
U

Ȟq(U ,Mét)

where U := {Ui → U}i∈I is an étale covering, Ui affine and I finite. Each
Ui1...in = Ui1 ×

U
. . .×

U
Uin is affine, hence

Hn(Mét)(Ui1,...,in) = Hn
ét(Ui1...in ,Mét)) = 0 ∀n ≤ q

Therefor Ȟp(U ,Hn(Mét)) = 0 and Ep,n2 = 0 for all n ≤ q and any p. In particular

En,02
∼= Hn

ét(U,Mét))

and one the an exact sequence

0 −→ E0,q
2

||
0

−→ Eq+1,0
2 −→ Hq+1

ét (U,Mét) −→ E0,q+1
2

||

Ȟ0(U,Hq+1(Mét)) = 0

−→ . . .

Thus
Hq+1
ét (U,Mét) ∼= Eq+1,0

2 = Ȟq+1(U,Mét) = 0 (by (8))

Remark 3.4. Note that, if the scheme X is affine, one has

Hq
ét(X,Mét) ∼= Hq

Zar(X,M ) = 0
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3.2 First degree cohomology

Let X be a scheme, Pic(X) is the group formed out of equivalence classes of invertible
sheaves, and is canonically isomorphic to H1

Zar(X,O
×
X) ([Fu06], Corollary (2.3.12)).

We will see in this subsection that the Zariski topology is fine enough to compute the
first degree cohomology.

Theorem 3.5. Let X be a scheme, and let O×Xét
be the étale sheaf defined by U 7→ O×U (U)

for all U ∈ Xét. Then one has

H1
ét(X,O

×
Xét

) ∼= H1
Zar(X,O

×
X) ∼= Pic(X).

Proof. Consider i : Xét → XZar. As done in the proof of theorem (3.1), one brings up
the Leray biregular spectral sequence once again

Hp
Zar(X,R

qi∗O
×
Xét

) =⇒ Hp+q
ét (X,O×Xét

)

This induces the exact sequence for the low-degree terms

0 −→ E1,0
2

||

H1
Zar(X,O

×
X)

−→ H1
ét(U,O

×
Xét

) −→ E0,1
2

||

H0
Zar(X,R

1i∗O
×
Xét

)

−→ . . .

Thus it suffices to show that R1i∗O
×
Xét

= 0, i.e. for all x ∈ X the stalks

(R1i∗O
×
Xét

)x = 0

As R1i∗O
×
Xét

is the sheaf associated to the presehaf U 7−→ H1
ét(U,O

×
Xét

), it is equivalent

to showing that H1
ét(V,O

×
Xét

) = 0 on stalks, i.e. for all x ∈ X,

lim
−→
x∈U

H1
ét(U,O

×
Xét

) ∼= lim
−→
x∈U

Ȟ1
ét(U,O

×
Xét

)

= lim
−→
V⊆U

Ȟ1(Ui ×
U
V,O×Xét

) = 0

for every étale covering U : {Ui → U} in Xét. Therefor, we can assume that U =
Spec(A) is affine, the Ui are affine, I is finite and A = OX,x is a local ring. Let
V = Spec(B), then as seen before, one gets a faitfully flat homomorphism A → B,
and the Čech complexe

0→ B
d−1−−→ B ⊗A B

d0−→ B ⊗A B ⊗A B
d1−→ B ⊗A B ⊗A B ⊗A B

d2−→ ...

Now let bγc be a class represented by the 1-cocycle γ ∈ (B ⊗A B)×. This yields an
isomorphism φ : B ⊗A B

∼−→ B ⊗A B which fulfills the co-cycle condition. By descent
theory, there exists a finitely generated and flat A-module M such that

B ⊗AM ∼= B
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(since the B-module B is also flat and finitely generated). Since A is local, M is a
free A-module of rank 1 and M ∼= A. By flat descent again, φ must come from the
B ⊗A B-module isomorphism

B ⊗A B ⊗A B
∼−→ B ⊗A B ⊗A B

and thus the associated 1-cocycle is trivial. Hence our Čech is a co-boundary and the
claim follows.

4 étale cohomology of fields.

Let k be a field, and ks be a separable closure of k. This defines a geometric point

s : Spec(ks) → Spec(k). We set Gk := Gal
(
ks
/
k

)
. Given a sheaf F on Spec(k)ét,

one has
Fs = lim←−

ks|k′|k
k′|k finite, galois

F(Spec(k′) (See [Tam94][p116-118])

We will show in this section that the étale cohomology over Spec(k) is nothing else but
the classical Galois cohomology. This provides an alternative way to compute group
cohomology of discreteGk-modules. But first, we recall some facts about Galois theory:

4.1 preliminaries on Galois theory

Let X be a scheme. We define a (left) action of Gk on X(ks) := Homk(Spec(ks), X)
by (ϕ, f) 7→ f ◦ ϕ, for every ϕ ∈ Gk and every f ∈ X(ks) (On the topological spaces
elements of Gk just send a point to itself). We recall the well known following facts:

– Gk is a profinite group, i.e a projective limit of finite groups

Gk = lim←−
ks|k′|k

k′|k finite, galois

Gal
(
k′/

k

)

– For an open subgroup Gi ≤ Gk one has X(ks)
Gi = X(kGi

s ). Morover one has a
decomposition

X(ks) =
∐

Gi≤Gk

X(kGi
s )

and Gk acts continuously on X(ks).

– A Gk-set M is called discrete if for all m ∈M , StabGk
(m) is open.

– For an étale Spec(k)-scehem Y , one has the decomposition

Y =
∐
i∈I

Spec(ki) where ki
/
k are finite, separable field extensions. (9)
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4.2 Galois-étale cohomology

Let k be a field, ks its separable closure and s be the corresponding geometric point.
We are now ready to prove the main theorem of this section, relating étale cohomology
over Spec(k) and Galois cohomology.

Theorem 4.1. Under the notations above, the functor F 7→ Fs induces an equivalence
of categories

Spec(k)ét −→ Gk
Mod

Moreover, one has for all q

Hq
ét(Spec(k),F) ∼= Hq(Gal

(
k′i
/
k

)
,Fs)

In order to prove this result we will proceed as follows:

Step 1: One has an equivalence of categories given by:

Spec(k)ét −→ Gk-Sets

X
ϕ7−→ X(ks)∐

i∈I
Spec(kGi

s )
φ←− [ M

Proof. We first show that our maps are well defined. It is clear that ϕ is. For a
discrete Gk set M , then one has a Gk-orbit decomposition

M ∼=
∐
i∈I

Mi

Since Gk is profinite, the open sets Gi = StabGk
(mi) ≤ Gk are closed and of

finite index, for all mi ∈M . By (infinite) Galois theory, one gets that kGi
s /k are

finite and separable field extensions, hence the morphisms

φi : Spec(k)→ Spec(kGi
s )

are unramified. They are clearly flat as well, hence étale (over k). As Spec(k)ét
has arbitrary coproducts, φ =

⋃
φi is étale (over k). Moreover one can easily

show that φ does not depend on the choice of the points in the orbits: indeed, a
choice of a different point in Mi is the same as substituting the field extensions
kGi
s with one of its Gk-conjugates, thus one is done by passing to spectra.

Now we need to show that ϕ and φ are quasi inverses of each others. Let X be
an étale k-scheme. By (9)

X =
∐
i∈I

Spec(ki) where ki
/
k are finite, separable field extensions.

Now, fixing a separable closure ks on has

φ(X) = X(ks) = (
∐
i∈I

Spec(ki))(ks) =
∐
i∈I

Spec(ki)(ks)
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Now, for i ∈ I
Spec(ki)(ks) ∼= Homk(ki, ks)

and Gk acts transitively on Homk(ki, ks) by permutating the ki ↪→ ks. Thus,
ϕ ◦ φ(X) corresponds to the étale k-scheme∐

i∈I
Spec(kGi

s )

where Gi = StabGk
(fi), fi a chosen point in Spec(ki)(ks). But clearly, Gi is

also the stabiliser of the action on Gk i.e. Gi = Gal
(
ks
/
ki

)
. Finally, kGi

s =

k
Gal(ks/ki)
s = ki and one has ϕ ◦ φ(X) = X.

The opposite direction is clear since φ commutes with coproducts.

Remark 4.2. One actually has to show slightly more here, namely that the
equivalence above induces an isomorphism of sites

Spec(k)ét ∼= TGk

Where TGk
is the canonical site on the category Gk-Sets. This boils down essen-

tially to showing that

– The following is a pulback diagram in Gk-Sets: Given maps (X
f−→ Z) and

(Y
g−→ Z) in Spec(k)ét

X(ks)×Z(ks) Y (ks)

X ×Z Y (ks) Y (ks)

X(ks) Z(ks)

q2

q1

∼

pr2

pr1 g(ks)

f(ks)

– For all covering {Ui → U} one has a covering {φ(Ui)→ φ(U)} in Spec(k)ét.
This comes from essential surjectivity and full faithfullnes of φ.

Step 2: one has the following equivalence of categories between discrete Gk-modules and
sheaves of abelian groups on the site TGk

, given by:

ShAb(TGk
)
∼−→ Gk

Moddisc (10)

F ϕ7−→ lim−→
GiEGk

open

F(Gk/Gi)

H omGk
( · ,M)

φ←− [ M
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Proof. This comes actually from a more general result:

Proposition 4.3 ([Tam94] Prop (1.3.3.1) or [Jan15] Theorem (8.7)). Let G be
a profinite group. Then the following functors yield an equivalence of categories

Sh(TGk
)
∼−→ Gk-Sets

F ϕ7−→ lim−→
GiEGk
open

F(Gk/Gi)

HomGk
( · ,M)

φ←− [ M

In particular, by Step 1, we get an equivalence

Shabét (Spec(k)) ∼= Gk
Moddisc

And by the first results of section 4.1

HomGk

(
Gk
/
Gi
, X(ks)

)
∼= X(ks)

Gi ∼= X(kGi
s ) ∼= HomXét

(Spec(kGi
s , X)

This induces the equivalence of categories

Shabét (Spec(k))
∼−→ Gk

Moddisc

F 7−→ Fs = lim←−
ks|k′|k

k′|k finite, galois

F(Spec(k′)

M (·) ←− [ M

where s : Spec(ks)→ Spec(k).

Step 3: For every (abelian) sheaf F on Spec(k)ét and every q ≥ 0 we have a (δ -functorial)
isomorphism

Hq
ét(Spec(k),F) ∼= Hq(Gk, lim←−

k′
F(Spec(k′))

Proof. Let F be an (abelian) sheaf on the site Spec(k)ét, corresponding to the
Gk-module M ∼= Fs via (10). Then one has

Γ(Spec(k),HomGk
( · ,M)) ∼= HomShab

ét (Spec(k))(hSpec(k),HomGk
( · ,M))

∼= HomGk
({∗},M) ∼= MGk
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where hSpec(k) = HomSpec(k)ét( · ,Spec(k)). Thus we get

Hq
ét(Spec(k),F) ∼= RqMGk = Hq({∗},F ′) (where F ′ corresponds to F under (10))

∼= Hq({∗},HomGk
( · ,M))

∼= Hq(Gk,M) ∼= Hq

Gk, lim−→
GiEGk

open

F ′(Gk/Gi)


∼= Hq

Gk, lim←−
ks|k′|k

k′|k finite, galois

F(Spec(k′))


∼= Hq(Gk,Fs).

Finally, we end this section by presenting a nice application of what we have done so
far, which is considered to be one of the main results in classical Galois Cohomology.

Corollary 4.4 (Hilbert 90). Let k be a field, then one has

H1(Gal(ks
/
k), k×s ) = 0

Proof. By theorem (4.1), for every (abelian) sheaf F on Spec(k)ét

Hq
ét(Spec(k),F) ∼= Hq(Gal

(
k′i
/
k

)
,Fs)

Now let X be an étale scheme consider the presheaf G := O×X : X 7→ O×X(X). Then

G ∼= HomXét
( · , X ×

Spec(Z)
SpecZ[T, T−1])

Hence G ∈ Shét(X)ab and for X = Spec(k) we get

Gs = lim←−
ks|k′|k

k′|k finite, galois

G(Spec(k′)) = lim←−
ks|k′|k

k′|k finite, galois

O×Spec(k′)(Spec(k′))

= lim←−
ks|k′|k

k′|k finite, galois

k′ = k×s

thus

H1(Gk, k
×
s ) ∼= H1(Gk, (O

×
Spec(k))s)

∼= H1
ét

(
Spec(k),O×Spec(k)ét

)
∼= H1

Zar

(
Spec(k),O×Spec(k)

)
by Theorem (3.1)

∼= Pic(Spec(k)) = 0
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The last assertion comes from the following: Let F be an invertible sheaf onX = Spec(k),
and let G be the OX -module such that F ⊗OX

G ∼= OX . Then the last assertion is
equivalent to proving that F ∼= OX . We do that on the stalks (well, stalk here since
we have only one point)

Fx ⊗OX,x
Gx ∼= (F ⊗OX

G)x ∼= OX,x ∼= k

Hence Fx ∼= k and we are done.
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